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a b s t r a c t

A non-linear boundary-value problem is considered which simulates the oscillations of a plate in a super-
sonic gas flow. The classical version of the formulation of the problem, proposed by Bolotin, as well as
several of its modifications considered by Holmes and Marsden, are taken as a basis. The oscillations of
the plate are studied assuming that the damping coefficient is small. This version of the formulation of
the problem leads to the need to investigate the bifurcations of the self-excited oscillations in a non-linear
boundary-value problem in a case which is close to the critical case of a double pair of pure imaginary val-
ues of the stability spectrum. The bifurcation problem is reduced to the investigation of a complex second
order non-linear differential equation by the method of normal forms. All the stages in the investigation
are carried out without using the Bubnov method.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction. Formulation of the problem

One of the best known problems of the oscillations of rigid bodies in a gas or liquid flow is the investigation of panel flutter in the linear
and non-linear formulations (see Ref. 1 and 2). As previously, we will confine ourselves to the case of cylindrical bending.

The simplest versions of the formulations of these problems can be written in the form of the following boundary-value problem, which
is already given in the normalized form

(1.1)

(1.2)

Here, w = w(t, x) is the normalized transverse displacement of the middle surface. The constant g1 > 0 is a generalized and normalized
damping coefficient and the non-negative coefficient g2 characterizes the viscoelastic friction. The principal parameter in this problem
c ≥ 0. This parameter is usually proportional to the square of the velocity of the flow and this will be so if the well-known Ackeret formula
is used. If aerodynamic forces are taken into account on the basis of the law of plane sections (see Ref. 1, § 4.8), then the parameter c is
found to be proportional to the flow velocity. It has been noted that, at high supersonic velocities, both versions are equally adimissible but
the version which takes account of aerodynamic forces using. Il’yushin’s law of plane sections is more popular in problems of the theory of
aero-elasticity. It is also pertinent to point out that the version when c = �, g1 =

√
ı� is adimissible. The flow velocity can be expressed in

terms of the dynamic pressure �. The coefficient � is usually fairly small. However, the choice of the actual form for the determination of c
is not of fundamental importance in the mathematical analysis.

The right-hand side of Eq. (1.1) reflects the effect of non-linearities on the dynamics of the oscillations and takes account of the non-linear
components of the geometric and aerodynamic loads. We shall further assume that F is a fairly smooth function (functional) of its variables
while the order of smallness of F is greater than the first order at the origin. So, it is assumed2 that
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where b1 and b2 are non-negative constants characterizing the measure of the non-linear axial (membrane) forces and the viscoelastic
friction respectively. Aerodynamic non-linearities are not taken into account in this version. Another version1 has been proposed

Here b3, b4 ≥ 0, c∞ is the speed of sound in the unperturbed medium and M is the Mach number. Aerodynamic forces are taken into account
up to cubic terms inclusive on the basis of the law of plane sections (“piston” theory).1,3 The constants b3, b4 depend on the pressure in
the unperturbed gas, the polytropic index and the Mach number. A detailed discussion of these questions and of renormalizations can be
found, for example, in Ref. 1, § 4.8, 4.12. Equation (1.1) was considered together with boundary conditions (1.2), that is, the conditions for
a hinged support. These boundary conditions can be replaced by rigid clamping conditions. Below, we will confine ourselves to the case
when there is a bilateral flow with different velocities around the plate. In this case, b3= 0 (see Ref. 1, Ch. 4). We shall discuss the treatment
of cases where there is no quadratic non-linearity.

If the damping coefficient g1 is a quantity of the order of unity, the mathematical apparatus of the investigation can be separated into
two parts. In the linear formulation the critical value c = c*, the flutter rate, is a quantity determined by the following conditions. When
c < c*, the zero equilibrium state is stable and, on exceeding this threshold value, it loses stability. Finally, when c = c*, a pair of simple and
pure imaginary eigenvalues (EVs) belongs to the stability spectrum and the remaining EVs lie in the half-plane of the complex plane, which
is separated by the inequality Re� ≤ −� < 0. The positive constant � depends on g1.

The non-linear analysis when c ≈ c* is based on the use of the classical Andronov-Hopf theorem which enable us to study bifurcations
in the neighbourhood of the zero equilibrium state4–6 (also, see Ref. 2).

Another problem arises if the coefficients g1 and g2 are small. We consider the linear differential operator

(1.3)

When c = 0, all of the EVs of the linear operator L(c) are simple and positive �n(0) = (�n)4, n ∈ N. The smallest positive value of c for which a
multiple eigenvalue first appears in the case of the operator L(c) is denoted by c0. For small g1, g2, it is obvious that c0 ≈ c* but c0 < c* always.
So, if g2 = 0 and c = c*, then the EV ±i�(� > 0) belongs to the stability spectrum, and this means that the linear operator L(c*) must have an
EV �2 ∓ i g1� lying in the “parabola of stability”. Hence, as c increases in the case of the operator L(c), multiple EVs first appear and it is
only afterwards that complex EVs appear. According to the terminology introduced by Movchan (see Ref. 1, § 4.9), c0 is the lower critical
flutter velocity. In the non-linear formulation when c ≈ c0, we arrive at a bifurcation problem when a multiple pair of pure imaginary EVs
can belong to the stability spectrum.

Note the lower flutter velocity will be determined without using Bubnov’s method, which is conventionally used to investigate of panel
flutter both in a linear analysis and when investigating the non-linear problem (for example, see Ref. 1 and 2).

2. Determination of the lower critical flutter velocity

We consider the differential operator L(c) (c ≥ 0), that is, operator (1.3) defined for sufficiently smooth functions satisfying the above-
mentioned boundary conditions. The set of all c ≥ 0, for which this operator has real EVs, is denoted by J(c). It is clear that c = 0 is included
in this set and, therefore, J(c) /= 0.

Lemma 1. Suppose c ∈ J(c). Then, the inequality � ≥ �4 is satisfied for any EV � of the operator L(c).

Proof. The equality

is integrated by parts. Expanding the function �(x) in a Fourier series �(x) =
∑∞

n=1�n sin �nx, we obtain the inequality

from which the correctness of the lemma follows.

We now consider the differential equation

(2.1)

Suppose �1,2 = ˛ ± iˇ, �3,4 = −˛ ± i�(� =
√

ˇ2 − 2˛2) are the roots of the corresponding characteristic equation. Then,

(2.2)

from which it can be concluded that �2 > 3	2, 	 > 0. The above structure of the roots follows from Vieta’s theorem. Using the form of the
general solution of Eq. (2.1)
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and the fact that the function �(x) satisfies the boundary conditions for a hinged support, we obtain the following system of equations for
determining of Aj

where qj = exp
j (j=1, 2, 3, 4). This system has a non-zero solution if its determinant is equal to zero. After some reduction, we obtain the
characteristic equation

(2.3)

relating 	 and �. Constructions in the papers by Movchan (see Ref. 1) have been used in deriving of Eq. (2.3). We now add to them.
Finding the lower critical flutter velocity can be interpreted as a conditional extremum problem: finding the minimum of the function

subject to the condition of the constraint (2.3). After this, the necessary conditions for an extremum lead to the equality

(2.4)

Equation (2.4) makes up (2.3) to a system of equations for determining the pair (	, �) for which there can be multiple EVs in the case
of the operator L(c). Moreover, equality (2.4) is a necessary condition for the existence of multiple EVs in the case of the operator L(c) (see
Ref. 7). A check of the sufficiency will be made below by analysing the corresponding boundary-value problem but after the system of
transcendental equations (2.3), (2.4) has been investigated.

The solutions of this system obtained using Seidel’s method are presented below. We denote its solutions by 	n, �n and the values of c
and the EV � of the operator L(c) corresponding to them by cn, �n. It was found that

We will now show five more sets of these solutions

It can be seen that the approximate equalities cn ≈ n3c1, �n ≈ n4�1 hold with a fairly reasonable degree of relative error (it does not
exceed 5% in the majority of cases). However, it can be shown from similarity considerations that the exact equalities cn ≈ n3c1, �n = n4�1
hold for all n ∈ N.

We will now prove them. Consider the auxiliary boundary-value problem

For this boundary-value problem, we find those values of c1 for which it has multiple EVs. The replacement z = lx reduces it to a boundary-
value problem in the interval [0,1], where c = l3cl, � = l4�l. Consequently, having determined those c for which there are multiple EVs in the
case of the operator L(c), it is possible to find the corresponding pairs (cl, �l). Now, putting, l = 1/n (n ∈ N), we note that the solution of the
auxiliary problem in the interval [0, 1/n] can be extended to the solution of the corresponding boundary-value problem in the interval [0,1].
This last fact is verified, for example, by means of re-expansions in sine series.

It follows from the physical meaning of the formulation of the problem that the smallest values of the free stream velocity are of interest.
Hence,

Standard calculations enable us to find A1, A2, A3, A4 and, consequently, the characteristic element e0(x) of the operator L0 = L(c0) corre-
sponding to � = �0. It is found that 0.63 ∓ 1.07i, A3 = 0.26, A4 = 1. Moreover, it can be verified by simple integration that the inhomogeneous
differential equation
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has a solution h0(x), which satisfies the boundary conditions for a hinged support. So, the characteristic function e0(x) and the associated
function h0(x) correspond to the eigenvalue � = �0 and

The differential operator L0 has a double EV �0. It follows from will known results see, for example, Ref. 7, Ch. 1), that its remaining EVs
�k (k = 1, 2, . . .) are simple and the eigenfunctions ek(x), the explicit form of which is of no importance in the subsequent constructions,
correspond to them. The differential operator, which is adjoint to L0

7 has the same EVs �0, �1, �2, . . .. and �0 is a double EV and the
eigenfunction p0(x) = e0(1 − x) and the associated function q0(x) = e0(1 − x) correspond to it. As previously, the remaining EVs �k are single
and the eigenfunctions pk(x) = ek(1 − x) (k = 1, 2, . . .) correspond to them. The hinged support boundary conditions are regular and the
system of functions e0(x), h0(x), e1(x), e2(x), . . . therefore forms a Riesz–Bari basis (see Ref. 7). In particular, the equalities

hold. Here, (f, g) is a scalar product in L0(0, 1).
It is useful to note the following fact for the constructions in the next section. The inequalities �k/�0 /= 4, �k/�0 /= 9 hold for all k ∈ N.

This is verified numerically in the case of small k. From equalities (2.2), we express 	 and � in terms of � and c. We obtain

We choose the real root, after which, initially putting c* = c0, �* = 4�0, we substitute the values 	*, �* which have been found into Eq.
(2.3). Checking shows these values of 	*, �* do not satisfy it. It is also possible to act in a similar manner for c* = c0.

For sufficiently large k, this can also be verified asymptotically: �k ≈ (�k)4. In this case, the same approach of considering the boundary-
value problems in the interval [0, 1/k] as was adopted above can be used.

We now consider the following boundary-value problem

(2.5)

(2.6)

where �(x) is a fairly smooth function.
It follows from the preceding constructions that the corresponding homogeneous boundary-value problem has a denumerable number

of periodic solutions

and the following assertion also holds.

Lemma 2. When � /= �k, inhomogeneous boundary-value problem (2.5), (2.6) has a unique periodic solution with period 2�/�. If � = �m

(m = 0, 1, . . .), then boundary-value problem (2.5), (2.6) has just one periodic solution if the following equality (solvability condition) holds

When � = �0(�0 =
√

�0) and �(x) = e0(x), boundary-value problem (2.5), (2.6) has a periodic solution u(t, x) = exp(i�0t)h0(x).

3. The normal form for the non-linear problem

We will now consider boundary-value problem (1.1), (1.2), assuming that the coefficients g1 and g2 are small. It is considered to be
permissible and advisable to carry out the following normalization

(3.1)

where � is a small non-negative parameter, and g0 and b0 are non-negative constants. We also put

(3.2)

In choosing the parameters of the problem using equalities (3.1) and (3.2), it can be observed that, when a0 ≤ 0, � > 0, g0 + b0 > 0, the
zero solution of boundary-value problem (1.1), (1.2) is already known to be asymptotically stable and, when a0 > 0 (� /= 0), it can become
unstable if a0 > K(g0, b0) > 0. A more detailed analysis of the neighbourhood of the zero equilibrium state in the norm of the phase space of
the solutions of boundary-value problem (1.1), (1.2) will be proposed below using the method of normal forms. It is natural to select the
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following functional spaces:
◦

W4
2 × ◦

W4
2 if g2 /= 0 and

◦
W4

2 × ◦
W2

2 if g2 = 0 (b0 = 0) as the phase space of the boundary-value problem considered.
These problems have been considered earlier5,6. Here, the closure of the set of functions from Ck(0, 1) which satisfies the hinged support

boundary conditions with respect to the norm of the Sobolev space Wk
2 (0, 1) is denoted by

◦
Wk

2 × ◦
Wk

2(0, 1).
We shall seek solutions of boundary-value problem (1.1), (1.2) in which the coefficients are selected according to the normalizations

(3.1), (3.2) in the form

(3.3)

where wj are fairly smooth functions which satisfy boundary conditions (1.2) and s = �t. We put

The functions zk(s) (k ∈ N) are such that
∞∑

k=1

|zk(s)2k8 < ∞. This inequality guarantees the inclusion of the function w2(t, s, x), for fixed t and

s (that is, as a function of x) in the phase space of the boundary-value problem investigated.
We substitute expression (3.3) into boundary-value problem (1.1), (1.2), in which the normalizations (3.1) and (3.2) have been taken

into account, and expand the right-hand and left-hand sides of Eq. (1.1) in powers of �. As a result, we obtain a recurrent sequence of linear
boundary-value problems. Thus, separating the term accompanying �, we obtain the boundary-value problem

(3.4)

(3.5)

Equalities (3.4) and (3.5) are obviously satisfied in the case of the function w2(t, s, x). Equating the terms in �2, we obtain an inhomoge-
neous boundary-value problem which differs from problem (3.4), (3.5), with a right-hand side of (3.4) equal to −2w1st − 2g0w1r .

The above-mentioned function w2(t, s, x) satisfies this inhomogeneous boundary-value problem if

(3.6)

Differentiation with respect to the auxiliary variable s is denoted by a prime.
Finally, for w3(t, s, x), we obtain the inhomogeneous boundary-value problem with right-hand side

Taking account of the fact that F(w1) = F(w1t , w1x, w1tx, w1xx) is a homogeneous cubic form, we refine the structure of this term:

Here, e0(x) are known functions of the variable x and their form depends on F1, F2, F3, F4. It follows from the conditions for the solvability
of the inhomogeneous boundary-value problem for w3(t, s, x) in the class of trigonometric polynomials in the variable t and Lemma 2 that
the following assertion holds.

Lemma 3. The functions zk(s) (k ∈ N) necessarily satisfy the sequence of ordinary differential equations

(3.7)

The equality

(3.8)

holds for the functions z0(s) and �0(s).
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The conditions for the solvability of inhomogeneous boundary-value problem (2.5), (2.6) as well as the inequalities �k /= 3�0 (k ∈ N) are
used in the deriving of Eqs. (3.7) and (3.8). It follows from Lemma 2 that (integration with respect to x is carried out from 0 to 1 everywhere
below)

It is pertinent to recall that the third equality can be specified depending on the choice of non-linearity. For instance, when the non-
linearity is chosen in accordance with the known approach,2 it was found that

In the other version of choosing the non-linearity when b3 = 0,1 we have

In all the cases mentioned, the integrals in the formulae for the determining of the coefficients of Eq. (3.8) can be calculated with an
accuracy which depends on the accuracy of the calculations for the determining of the functions e0(x) and h0(x) (see Section 1). Thus, it is
found that

In the first place, the sign of these integrals is important for the subsequent constructions. Using equalities (3.6) and (3.8), the equation

(3.9)

can be derived which determines the dynamics of the solutions of the boundary-value problem in a certain neighbourhood of its zero
equilibrium state. Here,

We recall that the constants d1 and d2 are calculated depending on the choice of the non-linearity in the initial boundary-value problem
and the formulae for calculating them have been presented earlier. In the first version of choosing the non-linearity considered above,
when only geometric non-linearity is taken into account, it can be seen that Q1 > 0 and the interaction of the geometric and aerodynamic
non-linearities leads to the fact that the inequality Q1 ≤ 0 can be satisfied for Q1.

Equation (3.9) has been derived earlier8,9 at a phenomenological level using, in particular, Bubnov’s method. In this paper, it has been
obtained as the normal form of boundary-value problem (1.1), (1.2).

4. Analysis of the normal form

We will now consider the question of the existence and stability of periodic solutions of Eq. (3.9) of the form

(4.1)

where, naturally,  > 0. After substituting expression (4.1) into Eq. (3.9) and separating the real and imaginary parts for  and �, we obtain
the system of equations

(4.2)

Expressing � from the second equation of system (4.2), we obtain the equation for the non-negative amplitude of 

(4.3)

In the special case when Q2 = 0 and q2 = 0, it is not a question of the periodic solution of (4.1) but of a non-zero equilibrium state of Eq.
(3.9).

Suppose * is a simple positive root of Eq. (4.3). We will consider the question of stability of periodic solution (4.1) corresponding to it.
For this purpose, we put

After substitution into Eq. (3.9), linearization and separation of the real and imaginary parts, we obtain a system of two linear differential
equations for the now real functions u1(s) and u2(s)

(4.4)
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for which it is necessary to investigate the stability of the zeroth equilibrium state. This question can be reduced in the usual way to the
investigation of the characteristic equation

(4.5)

where

It is understandable that one of the roots of the characteristic equation is equal to zero. This reflects the fact that Eq. (3.9) has a periodic
solution. The arrangement of the three remaining roots of Eq. (4.5) determines the stability of the cycle. Simple calculations show that

(4.6)

First suppose Q2 /= 0.

Lemma 4. Suppose Eq. (4.3) has two positive roots 1 and 2. Then, the periodic solution corresponding to the greater root is necessarily
unstable. If Eq. (4.3) has only one positive root, then the periodic solution of differential equation (3.9) corresponding to it is unstable.

The correctness of this assertion follows from the obvious fact that the inequality P ′(�)|�=�2 > 0 holds in the case of the larger root 2
of quadratic equation (4.3). It follows from formula (4.6) that, in this case, p1 < 0. A similar assertion has been presented earlier8,9.

Now, suppose Q2 = 0, which occurs in the case of the second of the versions for choosing the non-linear terms which have been considered.
In this case, q2 = 0. The differential equation (3.9) then has a family of non-zero equilibrium states

(4.7)

Lemma 5. Suppose q1 < 0 (Q1 > 0). Then, any of the equilibrium states of family (4.7) is stable and the zero equilibrium state (3.9) is
unstable. When q1 > 0 (Q1 < 0), solutions (4.7) are unstable and the zero equilibrium state is stable.

Thus, here a non-equilibrium state bifurcates from the zero solution of Eq. (3.9) with a change of stability. The bifurcations in the
Andronov-Hopf theorem are of this kind.

The proof of Lemma 5 follows from an analysis of Eq. (4.5) as well as from a standard analysis of the stability of the zeroth equilibrium
state of Eq. (3.9).

We further assume that � ∈ (0,�0), where �0 is a fairly small positive constant and * is a simple root of Eq. (4.3).

Theorem. Suppose z∗(s) = √
�∗ exp(iω∗s) is a structurally stable self-similar cycle of differential equation (3.9). A periodic solution of

boundary-value problem (1.1), (1.2) for which the asymptotic formula

holds can then be set to correspond to each such cycle. The cycle of boundary-value problem (1.1), (1.2), which is generated by this solution,
inherits the stability properties of the cycle z*(s) of Eq. (3.9).

The method proposed here for investigating of the periodic solutions in connection with problem (1.1), (1.2) is in the nature of an
adaptation of the well-known Krylov–Bogolyubov method10 in connection with problems with an infinite-dimensional phase space. Its
proof exists for a wide class of such equations.11–14 Note that an even more general problem of the bifurcation of invariant tori has been
considered (see for example, Ref. 11, § 4) but, here, it refers solely to the periodic solutions. In the detailed proof, use is made of the fact
that the solutions of system (3.7) tend to zero at an exponential rate.

We put

We then obtain the equation for u

which occurred in the class of equations considered earlier.11,12 We note that the linear operator B0 generates a subgroup of linear bounded
operators of the class (C0),15 which follows from the correct solvability of problem (3.4), (3.5), supplemented with the initial conditions
from the functional spaces indicated above. The operators C(�) and D(�) are governed by the operator L0.15 The equation u̇ = B0u has a
deunmerable number of periodic solutions with frequencies �0, �1, . . .. These solutions have been written out in Section 3, and it has been
checked that there are no lower resonances, which is necessary for the results presented earlier to be applicable.11,12 In the case being
considered, it always reduces to checking the inequalities �k/�0 /= 2, 3. There is one generating frequency here and it is equal to �0.
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5. Conclusion

It has been shown that, in the case of small damping coefficients, oscillations can arise at velocities which are lower than the flutter
velocity (c ≈ c0, c0 < c*). The bifurcating periodic solutions can be stable and unstable. Instability is more typical. Actually, if Eq. (3.9) has two
periodic solutions, the solution which is greater in amplitude is always unstable. When c < c*, the zero solution of boundary-value problem
(1.1), (1.2) which has been linearized in the zero equilibrium state, is always unstable but the treatment of the problem in a non-linear
formulation shows that there are unstable periodic solutions in a sufficiently small neighbourhood of the equilibrium state. In the case
considered, their amplitude is of the order of �. An increase in the amplitudes of the small initial deflections is therefore possible as time
passes, that is, a version of the strong excitation of oscillations is possible. According to the terminology of Andronov and his students, in
this problem the boundary of stability in the domain of the parameters is “dangerous”.16

This conclusion is only reached because of the non-linear formulation of the problem and it remains in force for the different ways of
taking non-linear effects into accout. It is also pertinent to note that, after renormalization, the damping coefficients can also turn out to
be small for sufficiently large cylindrical stiffness of a plate.
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